KCST LIBRARY MANAGEMENT PORTAL


Normal view MARC view ISBD view

Artificial intelligence : a modern approach / Stuart J Russell; Peter Norvig

By: Russell, Stuart.
Material type: TextTextSeries: Prentice Hall Series in Artificial Intelligence. Publisher: Upper Saddle River : Pearson; 2016Edition: 3rd ed. Global ed.Description: 1132 p.ISBN: 9781292153964.Subject(s): Artificial intelligenceDDC classification: 006.3
Contents:
Artificial Intelligence: -- Introduction: -- What is AI? -- Foundations of artificial intelligence -- History of artificial intelligence -- State of the art -- Summary, bibliographical and historical notes, exercises -- Intelligent agents: -- Agents and environments -- Good behavior: concept of rationality -- Nature of environments -- Structure of agents -- Summary, bibliographical and historical notes, exercises -- Problem-Solving: -- Solving problems by searching: -- Problem-solving agents -- Example problems -- Searching for solutions -- Uniformed search strategies -- Informed (heuristic) search strategies -- Heuristic functions -- Summary, bibliographical and historical notes, exercises -- Beyond classical search: -- Local search algorithms and optimization problems -- Local search in continuous spaces -- Searching with nondeterministic actions -- Searching with partial observations -- Online search agents and unknown environments -- Summary, bibliographical and historical notes, exercises -- Adversarial search: -- Games -- Optimal decisions in games -- Alpha-beta pruning -- Imperfect real-time decisions -- Stochastic games -- Partially observable games -- State-of-the-art game programs -- Alternative approaches -- Summary, bibliographical and historical notes, exercises -- Constraint satisfaction problems: -- Defining constraint satisfaction problems -- Constraint propagation: inference in CSPs -- Backtracking search for CSPs -- Local search for CSPs -- Structure of problems -- Summary, bibliographical and historical notes, exercises -- Knowledge, Reasoning, And Planning: -- Logical agents: -- Knowledge-based agents -- Wumpus world -- Logic -- Propositional logic: a very simple logic -- Propositional theorem proving -- Effective propositional model checking -- Agents based on propositional logic -- Summary, bibliographical and historical notes, exercises -- First-order logic: -- Representation revisited -- Syntax and semantics of first-order logic -- Using first-order logic -- Knowledge engineering in first-order logic -- Summary, bibliographical and historical notes, exercises -- Inference in first-order logic: -- Propositional vs first-order inference -- Unification and lifting -- Forward chaining -- Backward chaining -- Resolution -- Summary, bibliographical and historical notes, exercises -- Classical planning: -- Definition of classical planning -- Algorithms for planning as state-space search -- Planning graphs -- Other classical planning approaches -- Analysis of planning approaches -- Summary, bibliographical and historical notes, exercises -- Planning and acting in the real world: -- Time, schedules, and resources -- Hierarchical planning -- Planning and acting in nondeterministic domains -- Multiagent planning -- Summary, bibliographical and historical notes, exercises -- Knowledge representation: -- Ontological engineering -- Categories and objects -- Events -- Mental events and mental objects -- Reasoning systems for categories -- Reasoning with default information -- Internet shopping world -- Summary, bibliographical and historical notes, exercises Uncertain Knowledge And Reasoning: -- Quantifying uncertainty: -- Acting under uncertainty -- Basic probability notation -- Inference using full joint distributions -- Independence -- Bayes' rule and its use -- Wumpus world revisited -- Summary, bibliographical and historical notes, exercises -- Probabilistic reasoning: -- Representing knowledge in an uncertain domain -- Semantics of Bayesian networks -- Efficient representation of conditional distributions -- Exact inference in Bayesian networks -- Approximate inference in Bayesian networks -- Relational and first-order probability models -- Other approaches to uncertain reasoning -- Summary, bibliographical and historical notes, exercises -- Probabilistic reasoning over time: -- Time an uncertainty -- Inference in temporal models -- Hidden markov models -- Kalman filters -- Dynamic Bayesian networks -- Keeping track of many objects -- Summary, bibliographical and historical notes, exercises -- Making simple decisions: -- Combining beliefs and desires under uncertainty -- Basis of utility theory -- Utility functions -- Multiattribute utility functions -- Decision networks -- Value of information -- Decision-theoretic expert systems -- Summary, bibliographical and historical notes, exercises -- Making complex decisions: -- Sequential decision problems -- Value iteration -- Policy iteration -- Partially observable MDPs -- Decisions with multiple agents: game theory -- Mechanism design -- Summary, bibliographical and historical notes, exercises -- Learning: -- Learning from examples: -- Forms of learning -- Supervised learning -- Learning decision trees -- Evaluating and choosing the best hypothesis -- Theory of learning -- Regression and classification with linear models -- Artificial neural networks -- Nonparametric models -- Support vector machines -- Ensemble learning -- Practical machine learning -- Summary, bibliographical and historical notes, exercises -- Knowledge in learning: -- Logical formulation of learning -- Knowledge in learning -- Explanation-based learning -- Learning using relevance information -- Inductive logic programming -- Summary, bibliographical and historical notes, exercises -- Learning probabilistic models: -- Statistical learning -- Learning with complete data -- Learning with hidden variables: the EM algorithm -- Summary, bibliographical and historical notes, exercises -- Reinforcement learning: -- Introduction -- Passive reinforcement learning -- Active reinforcement learning -- Generalization in reinforcement learning -- Policy search -- Applications of reinforcement learning -- Summary, bibliographical and historical notes, exercises -- Communicating, Perceiving, And Acting: -- Natural language processing: -- Language models -- Text classification -- Information retrieval -- Information extraction -- Summary, bibliographical and historical notes, exercises -- Natural language for communication: -- Phrase structure grammars -- Syntactic analysis (parsing) -- Augmented grammars and semantic interpretation -- Machine translation -- Speech recognition -- Summary, bibliographical and historical notes, exercises -- Perception: -- Image formation -- Early image-processing operations -- Object recognition by appearance -- Reconstructing the 3D world -- Object recognition for structural information -- Using vision -- Summary, bibliographical and historical notes, exercises -- Robotics: -- Introduction -- Robot hardware -- Robotic perception -- Planning to move -- Planning uncertain movements -- Moving -- Robotic software architectures -- Application domains -- Summary, bibliographical and historical notes, exercises -- Conclusions: -- Philosophical foundations: -- Weak AI: can machines act intelligently? -- Strong AI: can machines really think? -- Ethics and risks of developing artificial intelligence -- Summary, bibliographical and historical notes, exercises -- AI: the present and future: -- Agent components -- Agent architectures -- Are we going in the right direction? -- What if AI does succeed? -- Mathematical background: -- Complexity analysis and O() notation -- Vectors, matrices, and linear algebra -- Probability distribution -- Notes on languages and algorithms: -- Defining languages with Backus-Naur Form (BNF) -- Describing algorithms with pseudocode -- Online help -- Bibliography -- Index
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Home library Call number Status Date due Barcode Item holds
Course Textbook Course Textbook KCST Library
006.3 Ru Ar (Browse shelf) Available 1000000700
Total holds: 0

Artificial Intelligence: --
Introduction: --
What is AI? --
Foundations of artificial intelligence --
History of artificial intelligence --
State of the art --
Summary, bibliographical and historical notes, exercises --
Intelligent agents: --
Agents and environments --
Good behavior: concept of rationality --
Nature of environments --
Structure of agents --
Summary, bibliographical and historical notes, exercises --
Problem-Solving: --
Solving problems by searching: --
Problem-solving agents --
Example problems --
Searching for solutions --
Uniformed search strategies --
Informed (heuristic) search strategies --
Heuristic functions --
Summary, bibliographical and historical notes, exercises --
Beyond classical search: --
Local search algorithms and optimization problems --
Local search in continuous spaces --
Searching with nondeterministic actions --
Searching with partial observations --
Online search agents and unknown environments --
Summary, bibliographical and historical notes, exercises --
Adversarial search: --
Games --
Optimal decisions in games --
Alpha-beta pruning --
Imperfect real-time decisions --
Stochastic games --
Partially observable games --
State-of-the-art game programs --
Alternative approaches --
Summary, bibliographical and historical notes, exercises --
Constraint satisfaction problems: --
Defining constraint satisfaction problems --
Constraint propagation: inference in CSPs --
Backtracking search for CSPs --
Local search for CSPs --
Structure of problems --
Summary, bibliographical and historical notes, exercises --
Knowledge, Reasoning, And Planning: --
Logical agents: --
Knowledge-based agents --
Wumpus world --
Logic --
Propositional logic: a very simple logic --
Propositional theorem proving --
Effective propositional model checking --
Agents based on propositional logic --
Summary, bibliographical and historical notes, exercises --
First-order logic: --
Representation revisited --
Syntax and semantics of first-order logic --
Using first-order logic --
Knowledge engineering in first-order logic --
Summary, bibliographical and historical notes, exercises --
Inference in first-order logic: --
Propositional vs first-order inference --
Unification and lifting --
Forward chaining --
Backward chaining --
Resolution --
Summary, bibliographical and historical notes, exercises --
Classical planning: --
Definition of classical planning --
Algorithms for planning as state-space search --
Planning graphs --
Other classical planning approaches --
Analysis of planning approaches --
Summary, bibliographical and historical notes, exercises --
Planning and acting in the real world: --
Time, schedules, and resources --
Hierarchical planning --
Planning and acting in nondeterministic domains --
Multiagent planning --
Summary, bibliographical and historical notes, exercises --
Knowledge representation: --
Ontological engineering --
Categories and objects --
Events --
Mental events and mental objects --
Reasoning systems for categories --
Reasoning with default information --
Internet shopping world --
Summary, bibliographical and historical notes, exercises Uncertain Knowledge And Reasoning: --
Quantifying uncertainty: --
Acting under uncertainty --
Basic probability notation --
Inference using full joint distributions --
Independence --
Bayes' rule and its use --
Wumpus world revisited --
Summary, bibliographical and historical notes, exercises --
Probabilistic reasoning: --
Representing knowledge in an uncertain domain --
Semantics of Bayesian networks --
Efficient representation of conditional distributions --
Exact inference in Bayesian networks --
Approximate inference in Bayesian networks --
Relational and first-order probability models --
Other approaches to uncertain reasoning --
Summary, bibliographical and historical notes, exercises --
Probabilistic reasoning over time: --
Time an uncertainty --
Inference in temporal models --
Hidden markov models --
Kalman filters --
Dynamic Bayesian networks --
Keeping track of many objects --
Summary, bibliographical and historical notes, exercises --
Making simple decisions: --
Combining beliefs and desires under uncertainty --
Basis of utility theory --
Utility functions --
Multiattribute utility functions --
Decision networks --
Value of information --
Decision-theoretic expert systems --
Summary, bibliographical and historical notes, exercises --
Making complex decisions: --
Sequential decision problems --
Value iteration --
Policy iteration --
Partially observable MDPs --
Decisions with multiple agents: game theory --
Mechanism design --
Summary, bibliographical and historical notes, exercises --
Learning: --
Learning from examples: --
Forms of learning --
Supervised learning --
Learning decision trees --
Evaluating and choosing the best hypothesis --
Theory of learning --
Regression and classification with linear models --
Artificial neural networks --
Nonparametric models --
Support vector machines --
Ensemble learning --
Practical machine learning --
Summary, bibliographical and historical notes, exercises --
Knowledge in learning: --
Logical formulation of learning --
Knowledge in learning --
Explanation-based learning --
Learning using relevance information --
Inductive logic programming --
Summary, bibliographical and historical notes, exercises --
Learning probabilistic models: --
Statistical learning --
Learning with complete data --
Learning with hidden variables: the EM algorithm --
Summary, bibliographical and historical notes, exercises --
Reinforcement learning: --
Introduction --
Passive reinforcement learning --
Active reinforcement learning --
Generalization in reinforcement learning --
Policy search --
Applications of reinforcement learning --
Summary, bibliographical and historical notes, exercises --
Communicating, Perceiving, And Acting: --
Natural language processing: --
Language models --
Text classification --
Information retrieval --
Information extraction --
Summary, bibliographical and historical notes, exercises --
Natural language for communication: --
Phrase structure grammars --
Syntactic analysis (parsing) --
Augmented grammars and semantic interpretation --
Machine translation --
Speech recognition --
Summary, bibliographical and historical notes, exercises --
Perception: --
Image formation --
Early image-processing operations --
Object recognition by appearance --
Reconstructing the 3D world --
Object recognition for structural information --
Using vision --
Summary, bibliographical and historical notes, exercises --
Robotics: --
Introduction --
Robot hardware --
Robotic perception --
Planning to move --
Planning uncertain movements --
Moving --
Robotic software architectures --
Application domains --
Summary, bibliographical and historical notes, exercises --
Conclusions: --
Philosophical foundations: --
Weak AI: can machines act intelligently? --
Strong AI: can machines really think? --
Ethics and risks of developing artificial intelligence --
Summary, bibliographical and historical notes, exercises --
AI: the present and future: --
Agent components --
Agent architectures --
Are we going in the right direction? --
What if AI does succeed? --
Mathematical background: --
Complexity analysis and O() notation --
Vectors, matrices, and linear algebra --
Probability distribution --
Notes on languages and algorithms: --
Defining languages with Backus-Naur Form (BNF) --
Describing algorithms with pseudocode --
Online help --
Bibliography --
Index

There are no comments for this item.

Log in to your account to post a comment.








© KCST LIBRARY 2019
//