KCST LIBRARY MANAGEMENT PORTAL


Normal view MARC view ISBD view

Introduction to the physics of waves / Tim Freegarde, University of Southampton.

By: Freegarde, Tim, 1965-.
Material type: TextTextPublisher: Cambridge : Cambridge University Press, 2013Description: xiv, 296 pages : illustrations ; 26 cm.Content type: text Media type: unmediated Carrier type: volumeISBN: 9780521197571.Subject(s): Waves -- Textbooks | Wave-motion, Theory of -- Textbooks | SCIENCE / PhysicsDDC classification: 531/.1133 Other classification: SCI055000 Online resources: Cover image | Contributor biographical information | Publisher description | Table of contents only
Contents:
Machine generated contents note: Preface; 1. The essence of wave motion; 2. Wave equations and their solution; 3. Further wave equations; 4. Sinusoidal waveforms; 5. Complex wavefunctions; 6. Huygens wave propagation; 7. Geometrical optics; 8. Interference; 9. Fraunhofer diffraction; 10. Longitudinal waves; 11. Continuity conditions; 12. Boundary conditions; 13. Linearity and superpositions; 14. Fourier series and transforms; 15. Waves in three dimensions; 16. Operators for wave motions; 17. Uncertainty and quantum mechanics; 18. Waves from moving sources; 19. Radiation from moving charges; Appendix: vector mathematics; Index.
Summary: "Balancing concise mathematical analysis with the real-world examples and practical applications that inspire students, this textbook provides a clear and approachable introduction to the physics of waves. The author shows through a broad approach how wave phenomena can be observed in a variety of physical situations and explains how their characteristics are linked to specific physical rules, from Maxwell's equations to Newton's laws of motion. Building on the logic and simple physics behind each phenomenon, the book draws on everyday, practical applications of wave phenomena, ranging from electromagnetism to oceanography, helping to engage students and connect core theory with practice. Mathematical derivations are kept brief and textual commentary provides a non-mathematical perspective. Optional sections provide more examples along with higher-level analyses and discussion. This textbook introduces the physics of wave phenomena in a refreshingly approachable way, making it ideal for first- and second-year undergraduate students in the physical sciences"-- Provided by publisher.Summary: "Balancing concise mathematical analysis with the real-world examples and practical applications that inspire students, this textbook provides a clear and approachable introduction to the physics of waves. The author shows through a broad approach how wave phenomena can be observed in a variety of physical situations and explains how their characteristics are linked to specific physical rules, from Maxwell's equations to Newton's laws of motion. Building on the logic and simple physics behind each phenomenon, the book draws on everyday, practical applications of wave phenomena, ranging from electromagnetism to oceanography, helping to engage students and connect core theory with practice. Mathematical derivations are kept brief and textual commentary provides a non-mathematical perspective. Optional sections provide more examples along with higher-level analyses and discussion. This textbook introduces the physics of wave phenomena in a refreshingly approachable way, making it ideal for first and second-year undergraduate students in the physical sciences"-- Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Home library Call number Status Date due Barcode Item holds
Book Book KCST Library
531.1133 Fr In (Browse shelf) Available 1000000609
Total holds: 0

Includes bibliographical references (pages 286-290) and index.

Machine generated contents note: Preface; 1. The essence of wave motion; 2. Wave equations and their solution; 3. Further wave equations; 4. Sinusoidal waveforms; 5. Complex wavefunctions; 6. Huygens wave propagation; 7. Geometrical optics; 8. Interference; 9. Fraunhofer diffraction; 10. Longitudinal waves; 11. Continuity conditions; 12. Boundary conditions; 13. Linearity and superpositions; 14. Fourier series and transforms; 15. Waves in three dimensions; 16. Operators for wave motions; 17. Uncertainty and quantum mechanics; 18. Waves from moving sources; 19. Radiation from moving charges; Appendix: vector mathematics; Index.

"Balancing concise mathematical analysis with the real-world examples and practical applications that inspire students, this textbook provides a clear and approachable introduction to the physics of waves. The author shows through a broad approach how wave phenomena can be observed in a variety of physical situations and explains how their characteristics are linked to specific physical rules, from Maxwell's equations to Newton's laws of motion. Building on the logic and simple physics behind each phenomenon, the book draws on everyday, practical applications of wave phenomena, ranging from electromagnetism to oceanography, helping to engage students and connect core theory with practice. Mathematical derivations are kept brief and textual commentary provides a non-mathematical perspective. Optional sections provide more examples along with higher-level analyses and discussion. This textbook introduces the physics of wave phenomena in a refreshingly approachable way, making it ideal for first- and second-year undergraduate students in the physical sciences"-- Provided by publisher.

"Balancing concise mathematical analysis with the real-world examples and practical applications that inspire students, this textbook provides a clear and approachable introduction to the physics of waves. The author shows through a broad approach how wave phenomena can be observed in a variety of physical situations and explains how their characteristics are linked to specific physical rules, from Maxwell's equations to Newton's laws of motion. Building on the logic and simple physics behind each phenomenon, the book draws on everyday, practical applications of wave phenomena, ranging from electromagnetism to oceanography, helping to engage students and connect core theory with practice. Mathematical derivations are kept brief and textual commentary provides a non-mathematical perspective. Optional sections provide more examples along with higher-level analyses and discussion. This textbook introduces the physics of wave phenomena in a refreshingly approachable way, making it ideal for first and second-year undergraduate students in the physical sciences"-- Provided by publisher.

There are no comments for this item.

Log in to your account to post a comment.








© KCST LIBRARY 2019
//