000 01581cam a2200337 i 4500
999 _c3
_d3
001 20515853
003 OSt
005 20191021125743.0
008 180525s2018 maua b 001 0 eng
010 _a 2018023826
020 _a9780262039246 (hardcover : alk. paper)
040 _aDLC
_beng
_cKCST
_erda
_eDLC
_dDLC
042 _apcc
050 0 0 _aQ325.6
_b.R45 2018
082 0 0 _a006.3/1
_223
100 1 _aSutton, Richard S.,
_eauthor.
_944
245 1 0 _aReinforcement learning :
_ban introduction /
_cRichard S. Sutton and Andrew G. Barto.
250 _aSecond edition.
260 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2018]
264 1 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2018]
300 _axxii, 526 pages :
_billustrations (some color) ;
_c24 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
490 0 _aAdaptive computation and machine learning series
504 _aIncludes bibliographical references (pages 481-518) and index.
520 _a"Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms."--
_cProvided by publisher.
650 0 _aReinforcement learning.
_945
700 1 _aBarto, Andrew G.,
_eauthor.
_946
942 _2ddc
_cBO