Solar energy desalination technology / Hongfei Zheng.
By: Zheng, Hongfei [author.]
.
Material type: 

Item type | Home library | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|
![]() |
KCST Library | 628.16725 Zh So (Browse shelf) | Available | 1000000319 |
Includes bibliographical references and index.
Machine generated contents note: ch. 1 General Problems in Sea water Desalination -- 1.1. Fresh Water Resource Shortage and Its Solutions -- 1.2. Composition and Properties of Seawater -- 1.3. Summary of General Seawater Desalination Methods -- 1.3.1. Distillation -- 1.3.2. Freezing Method -- 1.3.3. Electrodialysis -- 1.3.4. Reverse Osmosis -- 1.3.5. Solvent Extraction -- 1.3.6. Hydrate Method -- 1.3.7. Ion-Exchange Method -- 1.3.8. Absorption Method -- 1.3.9. Air Humidification and Dehumidification Method -- 1.3.10. Membrane Distillation -- 1.3.11. Forward Osmosis -- 1.4. The Historical Evolution of the Solar Energy Seawater Desalination -- 1.5. The Classification and Development of Solar Desalination Technology -- 1.5.1. The Classification of Solar Energy Seawater Devices -- 1.5.2. Thermal Method Solar Energy Seawater Desalination Technology -- 1.5.3. Membrane Method Solar Energy Seawater Desalination Technology -- 1.5.4. Combination of Thermal and Membrane Method -- 1.5.5. Solar System Combined With Traditional Desalination Device -- 1.5.6. Solar Energy Power-Desalting Cogeneration Technology -- 1.5.7. The Main Solar Desalination Systems Operating in the World -- 1.6. Facing Problems and Development Direction of Solar Desalination -- 1.6.1. Facing Problems of Conventional Solar Distillation Technology -- 1.6.2. Development Direction of Solar Desalination -- References -- ch. 2 Solar Energy Utilization and Its Collection Devices -- 2.1. Solar Radiation Energy -- 2.1.1. The Sun and Its Energy -- 2.1.2. Solar Constant -- 2.1.3. Variation in Extraterrestrial Radiation -- 2.1.4. Attenuation of Solar Radiation in Atmosphere -- 2.1.5. Spectral Distribution of Extraterrestrial Radiation -- 2.2. Catalog of Solar Collectors and Their Fundamental Technologies -- 2.3. Flat-Plate Solar Collector -- 2.3.1. Structure of Flat-Plate Solar Collector -- 2.3.2. Performance Parameters of Flat-Plate Solar Collector -- 2.3.3. Heat Loss Coefficient of Flat-Plate Solar Collector -- 2.3.4. Factors Influencing the Efficiency of a Flat-Plate Solar Collector -- 2.3.5. Choice of the Flat-Plate Solar Collector -- 2.4. Vacuum Tube Solar Collector -- 2.4.1. All-Glass Vacuum Tube Solar Collector -- 2.4.2. Metal-Glass Vacuum Tube Solar Collectors -- 2.4.3. Modules of Vacuum Solar Collector -- 2.5. Solar Pond -- 2.5.1. Basic Concept of Solar Ponds -- 2.5.2. Basic Structure of Solar Ponds and Basic Conditions to Maintain Stability -- 2.5.3. Solar Pond Liquid and Absorption of Solar Radiation at Pond Bottom -- 2.5.4. Thermal Efficiency of Solar Pond and Its Characteristics in Steady State and Transient State -- 2.5.5. Combination of Solar Pond and Seawater Desalination -- 2.6. Concentrating Solar Collector and Its Characteristics -- 2.6.1. Focusing Solar Collector System -- 2.6.2. Basic Structure of Concentrating Solar Collector -- 2.6.3. Influence of Concentration Ratio on System Collecting Temperature -- 2.6.4. Thermal Efficiency of Solar Concentration System -- 2.7. Nonimagining Concentrator -- 2.7.1. Structural Characteristics of Compound Parabolic Concentrators -- 2.7.2. Orientation of Compound Parabolic Concentrator and Its Received Energy -- 2.8. Paraboloid Solar Concentrator -- 2.8.1. Dish Paraboloid Concentrator System -- 2.8.2. Trough Paraboloid Solar Concentrator -- 2.9. Array Fresnel Lens Reflective Concentration System -- 2.9.1. Structure of Array Fresnel Lens Reflective Concentration System -- 2.9.2. Structure and Choice of Receiver -- 2.10. Transmission-Type Line-Focus Fresnel Solar Concentrator -- 2.10.1. Concentration Principle of Fresnel Lens -- 2.10.2. Optical Loss of Fresnel Lens -- 2.10.3. Concentration Ratio of Fresnel Lens -- 2.10.4. Curve-Shaped Fresnel Lens -- 2.10.5. Fresnel Lens Used for Solar Energy Field -- 2.11. Tower Solar Concentration System -- 2.11.1. Working Principle of Tower Solar Concentrator -- 2.11.2. Heliostats for Tower Solar Concentration System -- 2.11.3. Central Receiver for Tower Solar Concentration System -- 2.11.4. Heat Storage System of Tower Solar Power Generation -- 2.11.5. Optical and Thermal Efficiencies of Tower Solar Concentration System -- 2.12. Compound Solar Concentrator With Multiple Surfaces and Multiple Elements -- 2.12.1. Introduction -- 2.12.2. Compound Solar Concentrator With Multiple Elements and Multiple Surfaces -- References -- ch. 3 Fundamental Relationships of Heat and Mass Transfer in Solar Seawater Desalination Systems -- 3.1. Physical Properties and State Parameters of Moist Air -- 3.1.1. Physical Properties of Moist Air -- 3.1.2. State Parameters of Moist Air -- 3.2. Psychrometric Chart and the Basic Thermodynamic Process of Moist Air -- 3.2.1. Psychrometric Chart (h-d Diagram) -- 3.2.2. Basic Thermodynamic Process of Moist Air -- 3.3. Heat and Moisture Transfer in Direct Contact Between Air and Water -- 3.3.1. Heat and Moisture Transfer Between Air and Water -- 3.3.2. Phase Change in Direct Contact Between Air and Water -- 3.3.3. Lewis Relationship and Its Application -- 3.4. Water Vapor Generation Under Constant Pressure -- 3.4.1. Three Stages of Water Vapor Generation Under Constant Pressure -- 3.4.2. Table of Thermodynamic Properties for Steam (Steam Table) -- 3.5. Liquid Boiling Under Constant Pressure -- 3.5.1. Pool Boiling -- 3.5.2. Heat Transfer Coefficient of Convective Boiling in Tubes -- 3.5.3. The Influence of Surface Roughness -- 3.5.4. Factors Affecting Heat Transfer of Liquid Boiling -- 3.6. Condensation of Water Vapor Under Constant Pressure -- 3.6.1. Heat Transfer of Film-Wise Condensation on Vertical Plate -- 3.6.2. Film Condensation Outside the Horizontal Tube -- 3.6.3. Film Condensation Inside the Horizontal Tube -- 3.6.4. Dropwise Condensation -- 3.6.5. Analysis of the Factors Influencing Condensation Heat Transfer -- 3.7. Falling Film Evaporation of Water Under Constant Pressure -- 3.7.1. Falling Film Evaporation on Vertical Plate -- 3.7.2. Falling Film Evaporation on the Horizontal Tube -- 3.7.3. Falling Film Evaporation in Vertical Tube -- 3.8. Enhancement of Falling Film Evaporation and Condensation -- 3.9. Heat Transfer on Plate and Tube Wall in Convective Boundary Layer -- 3.10. Heat Exchangers and Heat Transfer Rate Calculations -- 3.10.1. Heat Exchanger Types -- 3.10.2. Heat Transfer Rate Calculation -- 3.10.3. The Log Mean Temperature Difference of the Heat Exchangers -- 3.11. Theoretical Power Consumption in Desalination and Minimum Heat Consumption in Distillation -- 3.12. The Perfect Distillation Process Driven by Solar Collector -- 3.12.1. Perfect Single-Effect Solar Distillation Process -- 3.12.2. Single-Effect Ideal Distillation Process Directly Heated by Solar Collector -- 3.12.3. Single-Effect Ideal Distillation Process With Collector Supplying Energy by Generating Electricity -- 3.12.4. The Finite Time Thermodynamic Process of Solar Distillation -- 3.12.5. Comparison of Several Operation Modes -- 3.13. The Performance Evaluation of Solar Desalination System -- 3.13.1. The Efficiency of Solar Desalination System -- 3.13.2. Gain Output Ratio and Performance Ratio of Solar Desalination System -- 3.13.3. Energy Recovery Ratio of Solar Desalination System -- References -- ch. 4 Traditional Solar Desalination Units -- 4.1. Operating Principle of Basin Type Solar Stills -- 4.2. Performance Analysis of Basin Type Solar Stills -- 4.3. Performance Coefficient of Solar Still -- 4.4. Determination of the Natural Convection Coefficient hc in the Still -- 4.4.1. Natural Convective Heat Transfer in the Still and Correction of Gr -- 4.4.2. Heat Transfer by Evaporation -- 4.4.3. Radiation Heat Transfer -- 4.4.4. The Determination of Natural Convection Heat Transfer Coefficient -- 4.4.5. A New Group of Relations Forecasting Water Production -- 4.4.6. Experimental Verification of the Theoretical Relations -- 4.5. Operation of Basin Type Solar Stills Under Actual Weather Conditions -- 4.5.1. Daily Operation Situation of Basin Type Solar Stills -- 4.5.2. The Whole-Year Operation of Basin Type Solar Stills -- 4.5.3. Influence of Other Parameters on the Performance of Basin Type Solar Stills -- 4.6. Multistage Basin Type Solar Stills -- 4.7. Basin Type Solar Stills With Outer Condenser -- 4.8. Basin Type Solar Stills With Porous Absorbent Material -- 4.9. Concentrating Type Passive Solar Stills -- 4.10. Inclined Type Solar Still -- 4.11. Other Shaped Passive Solar Stills -- 4.11.1. Simple Emergency Distiller -- 4.11.2. Solar Still Combined With Green House -- 4.11.3. Distiller With Transparent Film as the Cover -- 4.11.4. Spherical Solar Still -- 4.11.5. Integral Molding Plastic Solar Still -- 4.12. The Main Shortages and Improvement Direction of Basin Type Solar Stills -- 4.12.1. Three Main Shortages -- 4.12.2. The Maximum Efficiency of the Basin Solar Still -- 4.12.3. Energy Gain and Loss of Each Component of Solar Stills -- References -- ch. 5 Active Solar Distiller -- 5.1. The Basin-Type Solar Still Driven by Flat-Plate Solar Collectors -- 5.1.1. Performance Analyses of the Device -- 5.1.2. Experimental Operation of the Device -- 5.2. The Active Basin-Type Solar Still With Glass Cover Cooling -- 5.3. The Active Basin-Type Solar Still With Thermal Energy Storage Tank -- 5.4. The Basin-Type Solar Still With Active Outer Condenser -- 5.5. The Basin-Type Solar Still With Actively Recovering Latent Heat Outer Condenser -- 5.6. Multieffect Basin-Type Solar Still Combined With Solar Collectors
Note continued: 5.7. Multieffect Basin-Type Solar Still Heated Actively by Solar Collectors -- 5.8. Multistage Stacked Tray Solar Still With Enhanced Condensing Faces -- 5.8.1. The Transient Performance of the Device -- 5.8.2. The Relationship of Productivity and Operation Temperature -- 5.8.3. Steady-State Performance of the Device -- 5.8.4. The Relationship of the Operation Temperature and Input Power -- 5.8.5. Conclusions -- 5.9. Multistage Stacked Tray Solar Still Driven by Double Heat Sources -- 5.9.1. Characteristics and Operating Principle of the Solar Still -- 5.9.2. Experiment Results With Steady Heating -- 5.9.3. The Relationship Between Water Production Rate and Temperature -- 5.9.4. Performance Coefficient of the Device -- 5.9.5. Experiment Under Actual Weather Conditions -- 5.9.6. Conclusions -- 5.10. Tubular Solar Desalination Device -- 5.10.1. Single-Effect Tubular Distiller -- 5.10.2. Two-Effect Tubular Distiller -- 5.10.3. Experiment With a Three-Effect Device -- 5.10.4. Performance Comparison of Three-Effect Devices -- 5.10.5. The Performance of a Tubular Still Under Negative Pressure -- 5.10.6. Experiments With Different Gas Media -- 5.10.7. Conclusions -- 5.11. Multieffect Concentric Vertical Tube Solar Still -- 5.11.1. The Structure and Operational Principle of the Device -- 5.11.2. Results and Discussion -- 5.11.3. Conclusions -- 5.12. The Solar Distiller With Single-Stage Falling Film Evaporation and Condensation -- 5.13. The Solar Distiller With Multiple-Stages Falling Film Evaporation and Condensation -- 5.14. The Solar Distiller Enhanced by Power -- 5.14.1. Basin Solar Distiller With a Water-Cooled Condenser Outside -- 5.14.2. Focus Solar Still of Small Vacuum Strengthened Evaporation -- 5.15. A Multieffect Thermal Regeneration Solar Desalination Unit With Horizontal Tube Falling Film Evaporation and Closed Circulation -- 5.15.1. Operational Principle of the Experimental Unit -- 5.15.2. Description of the Experimental Unit -- 5.15.3. The Performance of the Unit -- 5.15.4. The Unit Operating Under Practical Weather Conditions -- 5.15.5. Conclusions -- 5.16. A Self-Storing Water Vertical Plate Solar Distiller -- 5.17. Solar Water Desalination Using an Air Bubble Column Humidifier -- 5.17.1. Introduction -- 5.17.2. Experimental Setup and Efficiency Calculation -- 5.17.3. Results and Discussion -- 5.17.4. Conclusion -- 5.18. Theoretical Analysis of a Vertical Multiple-Effect Diffusion Solar Still Coupled With a Tilted Wick Still -- 5.18.1. Vertical Multiple-Effect Diffusion Solar Still Coupled With a Tilted Wick Still -- 5.18.2. Results and Discussion -- 5.18.3. Conclusions -- References -- ch. 6 Humidification -- Dehumidification Solar Desalination Systems -- 6.1. The Principle and Category of Humidification -- Dehumidification Solar Desalination Systems -- 6.2. Process Description of Humidification -- Dehumidification (HD) Desalination -- 6.2.1. The Operation and Evaluation Methods of HD Desalination System -- 6.2.2. Energy Analysis of HD Desalination System -- 6.3. Performance Optimization by Pinch Technology -- 6.3.1. Single Effect System Optimization -- 6.3.2. Multieffect System Optimization -- 6.3.3. Comparisons -- 6.4. The Minimum Work Required for a Solar HDD Process -- 6.4.1. An Ideal Humidification -- Dehumidification Desalination (HDD) -- 6.4.2. The Minimum Work Required for the Dehumidification Process -- 6.4.3. The Minimum Work Required for Evaporation of Seawater -- 6.4.4. The Maximum GOR of the Solar HDD System -- 6.4.5. Conclusions -- 6.5. Heating Water Type Solar HDD System -- 6.6. Heating Air Type Solar HDD Systems -- 6.7. Solar Water and Air Heating Compound HDD System -- 6.8. Multieffect Humidification -- Dehumidification Solar Desalination System -- 6.9. A Closed Circulation Solar Still With Enhanced Falling Film Evaporation and AirFlow Absorption -- 6.9.1. The Energy and Mass Balance in the Closed Circulation Solar Still -- 6.9.2. Operation Principle of the Closed Circulation Solar Still -- 6.9.3. Description of the Experimental Unit -- 6.9.4. Results and Discussion -- 6.9.5. System Operating Under the Practical Weather -- 6.9.6. Heat and Mass Transfer Analysis of the System -- 6.9.7. Conclusions and Discussions -- 6.10. Tandem Multieffect Isothermal Heating Solar Desalination System Based on the Humidification -- Dehumidification Processes -- 6.10.1. Description of the Experimental Setup and the Working Principle -- 6.10.2. Results and Discussion -- 6.10.3. Conclusions -- 6.11. Other Typical Air Humidification -- Dehumidification Solar Desalination Systems -- 6.11.1. Tower Type Air Humidification -- Dehumidification Solar Distiller -- 6.11.2. Humidification -- Dehumidification Solar Desalination System With Falling Film Evaporation -- 6.11.3. Experiment of the System -- References -- ch. 7 Solar Desalination System Combined With Conventional Technologies -- 7.1. Multistage Flash Solar Desalination System -- 7.1.1. The Flash Principle and Technology -- 7.1.2. Solar Desalination With Multistage Flash Processes -- 7.2. Multieffect Solar Distillation System -- 7.2.1. The Principle of Multieffect Distillation -- 7.2.2. The Classification of the Multieffect Distillation Technological Process -- 7.2.3. The Classification of Multieffect Distillation Equipment -- 7.2.4. The Temperature Difference Between the Effects and the Factor Influencing Effect Number -- 7.2.5. Process Conditions -- 7.2.6. The Advantages and Disadvantages of Multieffect Distillation -- 7.2.7. The Experimental Operation of a Multieffect Solar Distillation System -- 7.3. Solar Vapor Compression Desalination System -- 7.3.1. Compression Distillation Principle -- 7.3.2. Compression Distillation Processes -- 7.3.3. Main Operation Modes of Compression Distillation -- 7.3.4. Advantages and Disadvantages of Compression Distillation -- 7.3.5. Solar Compression Distillation Experiments -- 7.4. Desalination Using the Partial Pressure Difference Between Freshwater and Seawater -- 7.5. Horizontal Tube Falling Film Evaporation and Multieffect Recover Solar Desalination System -- 7.5.1. Experiment Device and Operation Principle -- 7.5.2. Experimental Results and Analysis -- 7.5.3. System Operating Under Actual Weather -- 7.5.4. Conclusions -- 7.6. Low-Temperature Multieffect Desalination System Together With Solar Pond -- 7.7. Reverse Osmosis Desalination System Driven by Solar Photovoltaic Panel -- 7.8. Reverse Osmosis Desalination System Driven by Solar PV/T Device -- 7.9. Reverse Osmosis Desalination System Driven by Solar Power Cycle System -- 7.10. Large-Scale Solar Desalination by Combination With Concentrated Solar Power: Concept and Analysis -- References -- ch. 8 Absorption and Adsorption Solar Desalination System -- 8.1. Features and Performance of Absorption and Adsorption Working Substance -- 8.2. Solar Absorption Desalination System -- 8.3. The Solar Absorption System Integrated With Industrial Seawater Desalination -- 8.3.1. Single-Effect Solar Absorption Desalination System -- 8.3.2. Multiple-Effect Solar Absorption Seawater Desalination System -- 8.4. Practical Test and Evaluation of a Multiple-Effect Solar Absorption Seawater Desalination System -- 8.4.1. Structure of Experimental Facilities -- 8.4.2. Working Principles of Experimental Facilities -- 8.4.3. Results and Analysis of the Experiment -- 8.4.4. Simulation Calculation During the Heating of Solar Collector -- 8.5. Adsorption Solar Seawater Desalination System -- 8.6. Solar Absorption System Combined With Industrial Seawater Desalination Technology -- 8.6.1. Single-Effect Solar Adsorption Desalination System -- 8.6.2. Multiple-Effect Solar Adsorption Desalination System -- References -- ch. 9 Solar Concentrating Directly to Drive Desalination Technologies -- 9.1. Introduction -- 9.1.1. Challenges in Solar Desalination Technology -- 9.1.2. A New Way to Solve These Problems -- 9.2. Concentrated Light-Driven Solar Desalination System -- 9.2.1. Solar Desalination Systems Directly Driven by Dish Concentrator -- 9.2.2. The Solar Desalination System Directly Driven by Linear Fresnel Lens Concentrator -- 9.2.3. The Solar Desalination System Directly Driven by Tower Concentrator -- 9.3. Floating Solar Desalination Film -- 9.4. The Enhanced Methods of Concentrating Direct Heating Seawater for Evaporation -- 9.4.1. General Rules of Sunlight Transmission in Seawater -- 9.4.2. Adding Black Particles as Absorbers in Water -- 9.4.3. Absorption Enhancement by Colored Water -- 9.4.4. Adding the Black Columns or Plates in Water as the Receivers -- References -- ch. 10 The Benefit Evaluation and Material Selecting -- 10.1. The Economic Feasibility of Solar Desalination System -- 10.2. The Economic Evaluation Method of Solar Desalination System -- 10.2.1. Timeliness of Funds -- 10.2.2. Economic Analysis of an Installed Solar Desalination System -- 10.2.3. Case Calculation of Two Actual Systems -- 10.2.4. Economic Analysis of the Solar Desalination System Under Site Selection State -- 10.2.5. System Scale Influence on the Fresh Water Cost -- 10.2.6. Multiple-Factor Analysis of the Fresh Water Cost -- 10.3. The Material Selecting of Solar Desalination System -- 10.3.1. Corrosion of Metals Caused by Seawater -- 10.3.2. The Influence Factors of Seawater Corroding Metallic Materials -- 10.3.3. Heat Conductivity Influence on the Material Selection -- 10.3.4. Other Performance of Metals' Influence on Material Selection -- References.
There are no comments for this item.